首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   0篇
测绘学   1篇
大气科学   9篇
地球物理   4篇
地质学   124篇
海洋学   6篇
天文学   2篇
自然地理   15篇
  2013年   5篇
  2012年   4篇
  2011年   2篇
  2010年   8篇
  2009年   2篇
  2008年   12篇
  2007年   7篇
  2006年   8篇
  2005年   11篇
  2004年   3篇
  2003年   7篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1998年   6篇
  1997年   8篇
  1996年   7篇
  1995年   2篇
  1994年   5篇
  1993年   1篇
  1992年   1篇
  1991年   10篇
  1990年   3篇
  1989年   5篇
  1988年   4篇
  1987年   3篇
  1986年   2篇
  1985年   4篇
  1984年   4篇
  1983年   1篇
  1982年   4篇
  1981年   2篇
  1978年   2篇
  1976年   2篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
  1967年   2篇
  1963年   1篇
排序方式: 共有161条查询结果,搜索用时 78 毫秒
71.
Low-pressure granulite facies metasedimentary gneisses exposed in MacRobertson Land, east Antarctica, include hercynitic spinel-bearing metapelitic gneisses. Peak metamorphic mineral assemblages include spinel + rutile + ilmenite + sillimanite + garnet, spinel + ilmenite + sillimanite + garnet + cordierite, ortho-pyroxene + magnetite + ilmenite + garnet, spinel + cordierite + biotite + ilmenite and orthopyroxene + cordierite + biotite, each with quartz, K-feldspar and melt. The presence of garnet + biotite- and cordierite + orthopyroxene-bearing assemblages implies crossing tie-lines in AFM projection for the K2O-FeO-MgO-Al2O3-SiO2-H2O (KFMASH) system. This apparent contradiction, and the presence of spinel, rutile and ilmenite in the assemblages, is acounted for by using the KFMASH-TiO2-O2 system, i.e. AFM + TiO2+ Fe2O3. We derive a petrogenetic grid for this system, applicable to low-pressure granulite facies metamorphic conditions. Retrograde assemblages are interpreted from corona textures on hercynitic spinel and Fe-Ti oxides. The relative positions of the peak and retrograde metamorphic assemblages on the petrogenetic grid suggest that corona development occurred during essentially isobaric cooling.  相似文献   
72.
73.
Abstract An experimental study of the system CaCO3–MgCO3–FeCO3 was undertaken in order to calibrate the iron correction to the calcite–dolomite geothermometer, which is based on the solubility of magnesium in calcite in the assemblage calcite + dolomite. The experiments, at 450°C and lower temperatures, resulted in products with a very small grain size and incomplete equilibration. However, application of a carefully-devised automatic data processing algorithm to analyses of the phases in experimental charges, combined with a thermodynamic analysis, results in geothermometer diagrams which should be preferred to previous theoretical predictions.  相似文献   
74.
REPLY     
ROGER HIGGS 《Sedimentology》1991,38(6):1179-1182
  相似文献   
75.
Abstract Mineral equilibria in the system CaO–MgO–Al2O3–SiO2–H2O provide a basis for mapping of four reaction isograds and one bathograd in the low-pressure transition from subgreenschist to greenschist facies. Most of the Matachewan area of the Abitibi greenstone belt is in the lower-pressure bathozone, as indicated by the widespread occurrences of the subassemblage Prh–Chl. The higher-pressure bathozone is indicated by two occurrences of Pmp–Act–Ep–Qtz, but in these samples the bathograd is displaced to anomalously low pressure by the high Fe content of the coexisting minerals. This illustrates the need to analyse coexisting minerals, calculate activities of end-member species, and compute P–T curves for individual samples before interpreting the isograd/bathograd pattern. Petrographic and microprobe analysis indicates that great care must be taken in the selection of ‘equilibrium’ assemblages. Pyroxene phenocrysts in one sample are replaced by the assemblage Pmp–Act–Ep–Chl–Qtz, whereas Prh–Act–Ep–Chl–Qtz occurs in the groundmass. Compositional variation may be more cryptic, as in a sample of metabasaltic hyaloclastite that contains two spatially distinct ‘univariant’ assemblages, Prh–Pmp–Ep–Chl–Qtz and Prh–Act–Ep–Chl–Qtz, within the devitrified matrix. Whereas chlorite compositions are similar in both assemblages, prehnite and epidote in the latter assemblage are significantly richer in Fe and poorer in Al. Accordingly, the rock is interpreted to contain two distinct ‘univariant’ assemblages, rather than one ‘invariant’ assemblage (Prh–Pmp–Act–Ep–Chl–Qtz). The displaced ‘univariant’ curves for this sample intersect at 2.2 kbar and 250°C. Taking account of all thermobarometric implications, the low-grade limit of the greenschist facies is at 250–270°C and 2–2.5 kbar, corresponding to depths of 7–8 km. Comparison of apparent P–T conditions on both sides of the Larder Lake – Cadillac break, a regional CO2-metasomatized fault zone that is spatially associated with many Archaean gold deposits, provides an upper limit of not more than c. 1 km for post-metamorphic south-side-up, dip-slip displacement.  相似文献   
76.
Granulite facies metasedimentary gneiss exposed on Jetty Peninsula, east Antarctica, contains assemblages involving garnet-sillimanite-biotite-cordierite-spinel-ilmenite-rutile and garnet-orthopyroxene-cordierite-biotite, as well as quartz and K-feldspar. Peak assemblages involve garnet + sillimanite + ilmenite (±rutile) and garnet + orthopyroxene. P-T calculations suggest formation conditions of approximately 800d? C at 7-7.5 kbar. Cooling from peak conditions is suggested by biotite + garnet (±sillimanite) overprinting some peak assemblages. A subsequent increase in temperature is inferred from the formation of cordierite + garnet + biotite + ilmenite, garnet + sillimanite + cordierite + ilmenite and cordierite + orthopyroxene assemblages during D2. In slightly zincian bulk compositions, hercynitic spinel + cordierite + sillimanite constitutes the peak D2 assemblage. Average pressure calculations indicate peak pressures of 5.9 ±0.4 kbar at 700d? C for the cordierite-bearing D2 assemblages. Available radiometric data suggest that peak metamorphism occurred at c. 1000 Ma and D2 occurred after 940 ± 20 Ma. The following two possibilities exist for the metamorphic evolution. (1) The formation of the lower pressure cordierite-bearing assemblages is associated with a separate metamorphic event (M2), unrelated to the peak assemblage (M1), and the lower pressure assemblages have no relevance in terms of a single tectonothermal event. (2) The cordierite-bearing assemblages formed during a progression from peak conditions. In this case, the lower pressure assemblages reflect a broadly decompressional metamorphic evolution, during which temperatures fluctuated. Comparison with P-T paths from granulites of similar age in adjacent areas suggests that the second possibility should be preferred. The cooling interval between peak conditions and the development of cordierite-bearing coronas and symplectites suggests affinities with isobarically cooled granulites of similar age immediately to the west, and the low-P/high-T post-peak conditions are similar to the later stages of decompressional paths recognized in much of east Antarctica.  相似文献   
77.
The iron-rich ultramafic pegmatites comprise a suite of coarse-grainedrocks that form discordant bodies within the layered sequenceof the Bushveld Complex. These pegmatites, which are considerablymore abundant than is generally realized, provide evidence forthe differentiation of iron-rich residual melts. The pegmatitesare composed largely of iron-rich olivine and clinopyroxene,together with Ti-magnetite and ilmenite. Feldspar is characteristicallyabsent, but paradoxically the pegmatites preferentially replaceanorthositic cumulates. Two subgroups are recognized, olivine-clinopyroxenepegmatite and Fe-Ti oxides pegmatite. With increased stratigraphicheight the pegmatites become richer in Fe-Ti oxides. Thus, olivine-clinopyroxenepegmatite is prevalent in the Upper Critical and Lower MainZones, whereas Fe-Ti oxide pegmatite is restricted to the UpperMain and Upper Zones. Zoned pegmatite, with a core of Fe-Tioxide pegmatite, is transitional between the two subgroups. New whole-rock and electron microprobe analyses of olivine-clinopyroxenepegmatite from the Upper Critical and Lower Main Zones provideconvincing evidence that their composition is directly relatedto height. Cryptic compositional variations are analogous tothose displayed by the layered cumulates, but for a given heightthe pegmatites are always more evolved. Compositions of clinopyroxenein the pegmatites reflect a near-linear relationship with height,whereas cumulus pyroxenes display upward iron-enrichment trendscomplicated by replenishment and reaction with trapped intercumulusliquid. The olivine-clinopyroxene pegmatite formed by magmatic replacementof earlier-formed cumulates in response to infiltration of iron-richmelts. Suitably differentiated melts comprised intercumulusand residual liquids derived from thick anorthosite layers.The absence of feldspar, although not fully understood, is attributedto an immiscible relationship between dense, iron-rich meltsand light, silica-alkali-rich liquids. The latter infiltratedupward to be reincorporated into the resident magma. The iron-richmelts, however, drained down into the crystallizing cumulatepile. Channelling along early-formed fractures and joints wassignificant, locally resulting in huge pipe-like bodies of pegmatite. The iron-rich melts became increasingly differentiated withheight, partly in response to the fractional crystallizationof more evolved cumulates. The olivine-clinopyroxene pegmatitesare related to infiltration of Fe-Ti oxide-rich silicate melt,whereas Fe-Ti oxide pegmatite is ascribed to Fe-Ti oxide liquid,as originally argued by Bateman (1951). The Bushveld Complexfollowed the Fenner trend of almost uninterrupted iron enrichment.Evidence of pronounced iron enrichment is, however, manifestedin the discordant iron-rich ultramafic pegmatites several thousandsof metres below the height at which iron-rich cumulates areobserved.  相似文献   
78.
The effect of Mn on mineral stability in metapelites   总被引:17,自引:2,他引:17  
Calculations based on a KMnFMASH petrogenetic grid derived using an internally consistent thermodynamic dataset indicate that the principal effect of the presence of Mn in average subaluminous pelite compositions is to stabilize garnet to higher and lower pressures and temperatures over a wide range of bulk compositions. Garnet-bearing fields expand to lower temperatures and pressures with the addition of Mn, and garnet appears as an extra phase at low pressures. The addition of Mn also increases the number and extent of four AMnFM phase assemblages and stabilizes five AMnFM phases along univariant reactions. The KMnFMASH system predictions for typical subaluminous pelite bulk compositions match the sequence of isograds and assemblages observed in the Barrovian zones. The sequence of assemblages observed in the Stonehaven section can also be predicted if there is variation in bulk composition within the stratigraphic section. Mn appears to be less important in producing the sequence of isograds and garnet-absent assemblages in the low-pressure Buchan zones. The addition of Mn to the calculations does not change the sequence of isograds that are predicted to be stable in a regional metamorphic terrane, but the P – T  position of these isograds does change. In particular, the predicted temperature of the garnet-in isograd is lowered by as much as 100 °C by the addition of Mn to KFMASH. Mn also increases the range of metapelite bulk compositions that develop the assemblages traditionally identified as metapelite isograds.  相似文献   
79.
Suprasolidus phase relations at pressures from 4 to 7 GPa andtemperatures from 1000 to 1700C have been determined experimentallyfor a sanidine phlogopite lamproite from North Table Mountain,Leucite Hills, Wyoming. The lamproite is silica rich and hasbeen postulated to be representative of the magmas which wereparental to the Leucite Hills volcanic field. Near-liquidusphases above 5 GPa are pyrope-rich garnet and jadeite-rich pyroxene.Below 5 GPa, jadeite-poor pyroxene is the only near-liquidusphase. Near-solidus assemblages consist of clinopyroxene, titanianpotassium richterite and titanian phlogopite with either potassiumtitanian silicate above 5 GPa or potassium feldspar below 5GPa. The potassium titanian silicate is a newly recognized high-pressurephase ranging in composition from K4Ti2Si7O20 to K4TiSi8O20.It coexists with coesite at pressures above 6 GPa at 1100–1400C.A previously unrecognized K-Ba-phosphate is a common near-solidusphase. The phase relationships are interpreted to suggest thatlamproites cannot be derived by the partial melting of simplelherzolitic sources. However, it is proposed that sanidine phlogopitelamproites an derived by high degrees of partial melting ofancient metasomatic veins within a harzburgitic–lherzoliticlithospheric substrate mantle. The veins are considered to consistof phlogopite, K–Ti-richterite, K–Ba-phosphate andK–Ti-silicates. KEY WORDS: lamproilte; experimental petrology; upper mantle *Corresponding author  相似文献   
80.
What status for the Quaternary?   总被引:3,自引:0,他引:3  
The status of the Quaternary, long regarded as a geological period effectively coincident with the main climatic deterioration of the current Ice Age, has recently been questioned as a formal stratigraphic unit. We argue here that it should be retained as a formal period of geological time. Furthermore, we consider that its beginning should be placed at the Gauss-Matuyama magnetic chron boundary at about 2.6 Ma, rather than at its current position at about 1.8 Ma. The Quaternary would be formally subdivided into the Pleistocene and Holocene epochs. The global chronostratigraphical correlation table proposed is enclosed at the back of this issue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号